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A B S T R A C T   

It has been observed in high-latitude marine environments of the Southern Hemisphere that the variability in the 
ecological patterns of macrobenthic communities show variations at different spatial scales (i.e. cm to km), 
mainly influenced by environmental stress gradients. We examined macrobenthic communities of intertidal and 
subtidal habitats in a glacial fjord using taxonomic, ecological and oceanographic approaches, estimating vertical 
and horizontal variation using a nested design with different spatial scales ranging from centimeters to kilo
meters (quadrats, patches, shore and sites respectively). We found that vertical patterns in taxon richness and 
community structure were significant in both habitats. These patterns also showed horizontal variability at 
different spatial scales, becoming more pronounced at smaller scales (quadrats). The dominant taxa in the 
intertidal (macroalga) and subtidal (macroinvertebrate) communities also exhibited a scale-dependent distri
bution pattern, indicating that the greatest horizontal variation occurs at small spatial scales. Annual and 
opportunistic green algae such as Ulva intestinalis and Cladophora flexuosa were dominant in the intertidal, while 
the dominant taxa in the subtidal were the filter-feeding bivalve Aulacomya atra and the suspensivorous hy
drozoan Symplectoscyphus marionensis. The results were related to biological interactions and local abiotic factors 
characteristic of an estuarine system influenced by glaciers, with lower salinity and temperature and higher 
turbidity in sites close to glaciers. The information generated on diversity patterns is very relevant and can serve 
as a baseline in the evaluation of ecological patterns of shallow macrobenthic communities in environmental 
gradients influenced by glaciers in the Magellanic Subantarctic ecoregion.   

1. Introduction 

The study of patterns of ecological variation such as diversity, 
composition and structure along environmental gradients has increased 

during the last three decades, being fundamental to understand and 
predict ecological changes in communities (Underwood and Chapman, 
1998, Fraschetti et al., 2005, Paine et al., 2018). The observation of 
these patterns of ecological variation has contributed to the 
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development of several vertical zonation models (Stephenson and Ste
phenson, 1949, Araújo et al., 2005). However, vertical zonation itself 
does not explain all the variability in biodiversity distribution patterns 
in coastal ecosystems (Menconi et al., 1999, Zamprogno et al., 2012). 
Understanding the relationships between spatial patterns of biodiversity 
in relation to physical factors (i.e. wave exposure, substrate heteroge
neity, shore slope) and biological processes (i.e. predation, competition, 
herbivory and recruitment) may provide a better understanding of the 
influence of these factors on the distribution of intertidal and subtidal 
organisms (Menge and Sutherland 1976, Benedetti-Cecchi et al., 2000, 
Dethier and Schoch, 2005, Diez et al., 2009). Scales of observation are 
very relevant since zonation patterns can be very dependent on the 
horizontal scale of spatial observation (i.e. km, m, cm) (Ojeda et al., 
2014, Valdivia et al., 2014, Rodríguez et al., 2021). 

Intertidal and shallow subtidal habitats allow the identification and 
measurement of vertical zonation patterns and horizontal variability at 
different scales (Benedetti-Cecchi, 2001, Coleman, 2002, Benedetti- 
Cecchi et al., 2003, Catalán et al., 2020, Fraschetti et al., 2005). 
Particularly, intertidal habitats exhibit patterns of vertical variation due 
to the constant pressure of abiotic stressors (e.g. increased air exposure, 
constant temperature changes, differences in wave action and shoreline 
topography) (Stephenson and Stephenson, 1949, Crowe et al., 2000). 
The subtidal habitat also has important abiotic and biotic factors that 
generate different vertical zonation patterns: attenuation of solar radi
ation, water movements, currents, turbidity, predation, competition 
(Valdivia et al., 2014). Horizontal variation can also be influenced by a 
combination of abiotic stressors and biological processes. (Underwood 
and Chapman, 1998, Benedetti-Cecchi et al., 1999, Benedetti-Cecchi, 
2000, Díaz and McQuaid, 2011). Evidence suggests that both local 
ecological processes and micro-scale abiotic factors (e.g. substratum, 
aspect of slope) generate fine-scale horizontal variability (from centi
meters to a few meters) (Fraschetti et al., 2005, Valdivia et al., 2011, 
2014, Rodríguez et al., 2021), while regional-scale abiotic processes (e.g. 
surface water temperature, precipitation and photoperiod) would be 
responsible for high vertical variability (Ojeda et al., 2019, Catalan 
et al., 2020). 

The archipelago region of the Magellanic Subantarctic ecoregion 
(MSE) located between 48◦ and 56◦S was modeled during the Pleisto
cene by the advance and retreat of ice during glaciations (McCulloch 
et al., 2005, Fraser et al., 2009). These ice movements generated a 
dismembered and complex coastline formed by fjords and channels 
(Araya-Vergara, 2006; Iriarte, 2018). Ice recession after the Last Glacial 
Maximum (LGM), generated a complex mosaic of marine habitats, 
which were colonized by different taxa that structured the different 
assemblages along the different marine habitats of the MSE (Fraser et al., 
2012). Within the MSE it has been described that small-scale environ
mental variability is an important driver that shapes the composition, 
structure and diversity of benthic marine communities (Rozzi et al., 
2007, Mansilla et al., 2013, Ojeda et al., 2014, 2017, Villalobos et al. 
2021). Due to these characteristics, the MSE is a truly ideal natural 
laboratory to study the effect of abiotic environmental variations on the 
distribution of benthic communities (McGovern et al., 2020, Villalobos 
et al., 2021). 

Within the MSE there are several fjords with glaciers that are vestiges 
of the last glaciation (Segovia and Videla, 2017), which represent a 
unique ecosystem (Rozzi et al., 2012). The effect of climate change is 
becoming increasingly evident and it is reported that in the last two 
decades glaciers have lost about –23 Gt per year, showing a negative 
mass balance since 2009 (Dussaillant et al., 2019). Melting of glaciers 
within a fjord causes an increase in the inflow of lower density fresh
water into the marine systems, resulting in a decrease in salinity and 
stratification of the seawater column (Iriarte, 2018). Glacier melt has 
local effects at scales < 100 km, which causes changes in light avail
ability due to high turbidity in fjord surface waters caused by sediment 
transport in drainage systems and resuspension of fine sediments 
(Dowdeswell and Vásquez, 2013, Marshall et al., 2021). Therefore, 

benthic marine communities inhabiting these fjords are exposed to 
different environmental stress gradients (i.e. changes in salinity, tem
perature, turbidity, nutrients and oxygen) (Syvitski and Shaw, 1995, 
Mansilla et al., 2013, Gasbarro et al., 2018). These environmental gra
dients can generate local physiological barriers that would inhibit the 
dispersal, survival, growth and reproduction of many benthic species 
(Tilman et al., 2012, Becheler et al., 2022). Recent research on the 
Antarctic coast has suggested that glacier melt may have significant 
effects on the diversity and structure of benthic marine communities 
(Valdivia et al., 2015, 2020, 2021). It has also been suggested that small- 
scale processes are very relevant for structuring and maintaining local 
communities in these environments highly disturbed by physical factors 
(Valdivia et al., 2011, 2014, 2020, Rodriguez et al., 2021). 

The evaluation of spatial variability patterns of benthic diversity at 
different scales can help us to understand the functioning and stability of 
fragile ecosystems under different climate change scenarios. This study 
aims to evaluate the distribution patterns of benthic marine commu
nities along a fjord with the presence of glaciers at different spatial 
scales. 

2. Materials and methods 

2.1. Study area 

The study was conducted during a cruise in the summer of 2020 
between the Fjord of the Mountains (FMO) and Summer Passage, 
Magellanic Subantarctic ecoregion, Chile (51◦S; 73◦W) (Fig. 1, Suppl. 
Table 1). The fjord is about 60 km long and 2 km wide. The geo
morphology of the FMO creates a south-north axis of environmental 
variability with contributions of fresh water from five marine- 
terminating glaciers that emerge from the Cordillera Sarmiento, pro
ducing the oceanographic conditions of FMO. The fjord mouth connects 
the FMO with Union Sound, and subsequently with Summer Passage 
approximately 70 km to the southwest. 

The study sites were selected according to the environmental vari
ability of the area. Therefore, two sites were chosen in the FMO: German 
Glacier (GG) and Bernal Glacier (BG). The first, due to glacier retreat, 
presents a fluvioglacial channel of 3 km with respect to the fjord, while 
the second has terminal moraines with an extension of 500 m with 
respect to the fjord (Fig. 1). The Union Sound study site was Jaime Island 
(JI), without glacier presence, with estuarine and oceanic influence 
(Fig. 1, Suppl. Table 1). Long Island (LI), without glacier presence was 
used in the Summer Passage. It is located in a more exposed area, with 
greater exposure to the influence of ocean waters (Fig. 1, Suppl. 
Table 1). 

2.2. Oceanographic characterization 

Temperature and salinity profiles were measured with the CTD SBE 
19 V2 plus equipment. The measurements were performed at a 
maximum depth of 30 m in a transect from north to south from GG to LI, 
with distances among hauls that varied from 5 to 10 km, except for the 
measurement of LI that was>60 km (Fig. 1, Suppl. Table 2). Turbidity 
measurements were made at a maximum depth of 10 m at each study 
site using a HANNA HI 9829 Portable Multiparameter. The vertical 
profiles of the environmental variables were represented with the Ocean 
Data View v5.2.0 software (ODV) (Schlitzer, 2021). 

2.3. Biodiversity sampling design 

The macrobenthic communities were characterized through manual 
collection of biological samples of macroinvertebrates and macroalgae 
(>1 cm) in each intertidal level (high, mid and low), and SCUBA diving 
in two subtidal depths (5 and 10 m). Percent coverage of the taxa was 
recorded using photo-quadrants (50 × 50 cm) at a fixed height of 1 m 
from the substrate, using an Olympus TG-6 camera (Ojeda et al., 2017, 
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Rodríguez et al., 2021). The biological samples collected were frozen for 
transport to the Laboratory of Antarctic and Subantarctic Marine Eco
systems (LEMAS) of the Universidad de Magallanes. Seaweeds and in
vertebrates were classified to the lowest possible taxonomic level 
(family, genus or species) with the support of specialized literature for 
macroalgae (Hoffmann and Santelices, 1997, Ramírez and Santelices, 
1991, Mendoza and Nizovoy, 2000, Boraso et al., 2003) and macro
invertebrates (Reid and Osorio, 2000, Linse, 2002, Aldea et al., 2011, 
Rosenfeld et al., 2015). They were also classified according to their 
functional attributes: mobility (sessile or mobile), and trophic habits 
(filter feeder, suspensivore, herbivore, omnivore, carnivore and 

scavenger) (Ojeda et al., 2014). The morphological habit was used for 
macroalgae (filamentous, corticated filamentous, tubular, foliated, 
corticated foliated, corticated terete, crustose, leathery) (Steneck and 
Dethier, 1994, Bates, 2009, Rosenfeld et al., 2018). The macroalga 
samples were herborized using the methodology of Ramírez (1995) and 
deposited in the cryptogamic herbarium of the LEMAS (https://sweet 
gum.nybg.org/science/ih/herbarium-details/?irn = 258932) at the 
Universidad de Magallanes. 

Photo-quadrants were taken in the four study sites (GG, BG, JI and 
LI) for the intertidal and subtidal habitats, separated by a distance >10 
km (Suppl. Fig. 1). Two separate shores with a distance of about 1 km 

Fig. 1. Map of the Magellanic Subantarctic ecoregion, showing study sites (yellow circles) and CTD salinity and temperature measurement stations (red circles). 
From north to south: GG: German Glacier (a); BG: Bernal Glacier (b); JI: Jaime Island (c); LI: Larga Island (d). 
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between them were chosen randomly in each study site (Suppl. Fig. 1). 
In each shore, three patches with a separation of <100 m were randomly 
selected. Three photo-quadrants were obtained per intertidal coastal 
elevation level (high, mid and low) for each site and for each subtidal 
depth (5–10 m depth) (Suppl. Fig. 1). In summary, the intertidal sam
pling design was 4 (sites - random) × 2 (shores - random) × 3 (patches – 
random) × 3 (intertidal levels - fixed) × 3 (quadrants - random) = 216 
quadrants. The subtidal sampling design was 4 (sites - random) × 2 
(shores - random) × 3 (patches – random) × 2 (subtidal levels - fixed) ×
3 (quadrants - random) = 144 quadrants. Finally, according to the fit of 
the model and according to García (2007), the following spatial scales of 
observation were defined: sites, large scale; shores, mid-scale; patches 
and quadrants, small scale. 

2.4. Biological data analysis 

Photographic quadrats were analyzed with PhotoQuad v1.4 software 
(Trygonis and Sini, 2012). The quadrat boundary was defined manually 
for each image with a digital border, and stratified random markers (n =
100) were used to obtain the measure of relative abundance of taxa (i.e. 
percent cover). For quantification, taxa present within each photo- 
quadrat were considered, focusing on primary spaces (i.e. basal spe
cies). When overlapping organisms occurred, we included secondary 
space holders (sessile species attached to primary space holders) and 
associated mobile species (Villalobos et al., 2021). 

Variations of intertidal and subtidal macrobenthic marine commu
nities with respect to different spatial scales were determined using 
taxon richness as the total number of taxa identified in each photo- 
quadrant, and community structure through calculation of the Bray- 
Curtis dissimilarity distance between pairs of observations (Bray and 
Curtis, 1957), using coverage values transformed to proportions. 

A univariate mixed model (ANOVA) was used for taxon richness 
using R v3.5.3. software (R Development Core Team, 2020), and a 
multivariate mixed model (PERMANOVA) for the Bray-Curtis dissimi
larities calculated from the coverage percentages of the community 
structure using the PRIMER 6 v6.1.13 software with the complement 
PERMANOVA + v1.0.3 (Clarke and Goley, 2005) (PRIMER-E, Ltd. Ply
mouth, UK). Prior to the ANOVA analysis with the average taxon rich
ness, the variable was transformed to ln(x + 1) to fulfill the normality 
assumptions. The random factors in the models were sites, shores 
(nested within sites) and patches (nested within shores), and as a fixed 
factor the intertidal and subtidal coastal elevation level. Homogeneity of 
variances of the ANOVA model was evaluated using residual-vs-fit and 
normal Q-Q plots, a method considered the most appropriate for large 
samples (Suppl. Figs. 2, 3) (Wilk and Gnanadesikan, 1968). This was 
done with R. 

The relationships between the benthic assemblage structure (taxon 
cover) and environmental variables (temperature, salinity and turbidity) 
were investigated using a canonical correspondence analysis (CCA) (Ter 
Braak, 1986) using the vegan package in R. Rare species are often 
positioned as outliers in correspondence analysis ordinations (Greena
cre, 2013) and statistical estimation problems are posed by multi
collinearity (Ter Braak, 1986). Rare taxa were omitted from analysis 
prior to conducting CCA (Zubia et al., 2018). A Monte-Carlo randomi
zation test (1000 permutations) was used to assess the probability of the 
observed pattern being due to chance (McCune and Grace, 2002). 

The contribution of each taxon to the variation of the community 
structure was determined through the analysis of similarity percentage 
(SIMPER) routines (Clarke, 1993). This procedure was used to deter
mine the species that contribute to the similarity of a group (typifying 
species), and to know the species that contribute to the differentiation of 
the different groups (discriminating species) (Clarke, 1993). The 
average dissimilarity among groups was separated and expressed as the 
average abundance of each taxon, applying the contribution cutoff of 
each taxon at 90 %. This analysis was performed in PRIMER 6 v6.1.13 
software with the PERMANOVA + v1.0.3 plugin (Clarke and Goley, 

2005, PRIMER-E, Ltd. Plymouth, UK). 
The patterns of spatial variation in taxon richness, community 

structure and the most abundant taxa in the intertidal and subtidal as
semblages were evaluated with the method proposed by Valdivia et al. 
(2011, 2014). In this procedure, the variance component (VC) and 
pseudo-variance component (PVC) obtained through the ANOVA and 
PERMANOVA analyses for the random factors were calculated. For each 
random factor, VC and PVC were estimated as the difference between its 
mean square (MS) and the MS of the term immediately below in the 
nested hierarchy. They were evaluated with the VCA package in R 
(Valdivia et al., 2014). Negative variance components were set to zero 
(Valdivia et al., 2014). 

3. Results 

3.1. Oceanographic characterization 

Salinity and temperature profiles showed Estuarine Water (EW) in 
the surface layer (0–20 m depth), which was accentuated in the sections 
near the study sites of the GG and BG due to melting. Their salinities 
varied between 18 and 20 PSU and temperatures up to 9.50 ◦C (Fig. 2a, 
2b). EW is present throughout the entire FMO. Salinity and temperature 
increased towards LI, where salinity varied between 23 and 25 PSU and 
temperature reached 12.3 ◦C (Fig. 2a, 2b). An intermediate water mass 
(20–30 m depth) was recorded flowing throughout the FMO and ho
mogenizing towards the LI study site as a result of mixing between the 
shallow and deep water masses in LI (Fig. 2a, 2b). Modified Subantarctic 
Water (MSAW) was observed below the intermediate mixing circulation 
(>30 m depth). Salinity>30 PSU (30 PSU) and temperatures lower than 
9.50 ◦C were recorded in LI (Fig. 2a, 2b). 

Turbidity was variable between study sites; in the GG and GB sites in 
the FMO the turbidity presented high values in the most superficial zone 
(<2 m, Fig. 1c). Towards the fjord mouth of the FMO, in JI the turbidity 
showed high values as depth increased (>6 m, Fig. 1c). There was no 
turbidity in LI, outside the fjord. The site with the highest average 
turbidity was in the GG; 152.7 FNU was recorded; the lowest average 
turbidity was found in LI with 0 FNU (Fig. 2c). 

3.2. Richness and composition of macrobenthic communities 

The richness of the benthic communities was represented by 29 taxa 
in the intertidal habitat (Suppl. Table 3) and 62 taxa in the subtidal 
habitat (Suppl. Table 4). Macroalgae (86 %) were the most frequent in 
the intertidal habitat (S = 25 spp.), while, macroinvertebrates (55 %) 
were more frequent in the subtidal habitat (S = 34 spp.). Eleven func
tional groups were identified in the intertidal and 13 in the subtidal. In 
the intertidal the species of corticate, foliose and filamentous terete 
algae were featured (21 % each), while sessile filter feeders were 
prominent in the subtidal (24 %). 

3.3. Patterns of spatial variability in macrobenthic communities 

Taxon richness was highest for the intertidal habitat at sites GG and 
LI and lowest at sites BG and JI (Suppl. Fig. 4a). In the subtidal habitat, 
taxa richness was higher at sites far from the glaciers (JI and LI) and 
lower at sites with glaciers (GG and BG) (Suppl. Fig. 4b). 

Local patterns of intertidal and subtidal taxon richness in the inter
tidal habitat showed vertical and horizontal variability (Figs. 3, 4). It 
was observed that the sites near the glaciers did not show an increase in 
average richness (from high to the low intertidal), except for sites JI and 
LI. These patterns, however, varied between scales of observations, as 
shores showed differences in taxon richness but patches did not (Fig. 3). 
Accordingly, ANOVA indicated a significant interaction effect of level by 
shore scale on taxon richness (Table 1). The vertical zonation in taxon 
richness was less clear for the subtidal habitat than for the intertidal, 
nevertheless, horizontal variation was important in the subtidal. Taxon 
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richness tended to increase from 5 to 10 m at, LI, but showed an inverse 
trend in BG and JI (Fig. 4). The ANOVA results supported these patterns, 
as a significant interaction between depth and patch scale was detected 
(Table 1). 

The CCA analysis revealed a strong correspondence between these 
environmental factors and the presence of two groups of species (Fig. 5). 
For the intertidal habitat, the assemblages that were associated with 
more estuarine conditions and higher turbidity (negatively correlated 
with higher salinity and temperature) had higher frequency and 
coverage of R. tortuosum, U. intestinalis and C. flexuosa (Fig. 5a). As
semblages that were associated with more marine conditions and less 
turbidity (positively correlated with higher salinity) had higher fre
quency and coverage of S. lomentaria, A. arcta, N. fastigiata and Por
phyra/Pyropia sp1. (Fig. 5a). The horizontal variation in community 
structure was more marked for the subtidal habitat than in the intertidal 
habitat (Fig. 5b). The assemblages that were associated with more 
estuarine conditions and higher turbidity had higher frequency and 
coverage of A. atra, S. marionensis, B. laevis and U. lactuca (Fig. 5b). 
Assemblages that were associated with more marine conditions and less 
turbidity had higher frequency and coverage of Porphyra/Pyropia sp2., 
Chaetopterus sp., Rhodymenia sp2., P. magellanica, S. condensata, 
H. berkeleyi, C. virgatum, L. flavicans, S. skottsbergii, M. chilensis and 
D. ligulata (Fig. 5b). The PERMANOVA results supported the influence of 
the spatial variability on the effects of the horizontal and vertical stress 
gradients on community structure, as the interactive effect of both fac
tors was significant in different scales (Table 1). 

The variance component (VC) of intertidal and subtidal taxon rich
ness showed a general pattern of horizontal variance; the higher vari
ance components were those observed at the smallest scale, except for 
the low intertidal level (Fig. 6a, 6b). Pseudo-variance components (PVC) 
in the intertidal and subtidal community structure also showed high 
spatial scale-dependent variability. The highest values of the PVC in the 
intertidal and subtidal were found at small spatial scales (Fig. 6c, 6d). 

SIMPER analysis showed that the intertidal community structure is 
composed of 10 taxa that explain 90 % of the dissimilarity between the 
high and mid-levels, as well as between the mid and low levels (Table 2). 
The taxa that contribute most to intertidal dissimilarity (>50 %) were 
the foliose algae U. intestinalis and Porphyra/Pyropia sp1., tubular 
A. utricularis and filamentous C. flexuosa (Table 2). Twenty-three taxa 
explain 90 % of the dissimilarity of the subtidal community structure 
between 5 and 10 m depth (Table 3). The taxa that most contributed to 
the dissimilarity (>50 %) were the sessile filter feeder Aulacomya atra 
and sessile suspensivores S. marionensis and B. laevis (Table 3). 

The VC of the taxa with the highest contributions to dissimilarity 
based on SIMPER analyses showed the highest variances at the smallest 
scales of observation, i.e. patches and quadrants (Fig. 7). The VC of the 
representative macroalgae in the different spatial scales fluctuated ac
cording to the intertidal level. The VC of U. intestinalis at the lowest level 
was similar to those of shores and quadrants, while at the mid-level it 
was greater in shores, and at the lowest level in quadrants (Fig. 7a). The 
highest VC of C. flexuosa in the high and mid intertidal occurred among 
quadrants, while in the low intertidal it was among shores (Fig. 7b). In 
the subtidal, the VC of the taxa with the highest contribution to the 
dissimilarity based on the SIMPER analyses also showed the highest 
variability at small scales, particularly among quadrants at both subtidal 
depths (Fig. 7c, 7d). 

4. Discussion 

The results showed an environmental gradient in the Fjord of the 
Mountains (FMO), since study sites GG and BG inside FMO are near to 
glaciers comprise an estuarine system, with an increase in salinity and 
temperature towards study sites JI and LI outside FMO. Turbidity was 
higher at study sites GG and BG inside FMO due to the direct influence of 
glaciers. The results also showed that the horizontal and vertical vari
ations in richness and community structure of the intertidal and subtidal 

Fig. 2. Vertical sections (0–30 m) of salinity (a) and temperature (b), and profiles (0–10 m) of turbidity (c) obtained during summer 2020 between fjord of the 
Mountains and Summer passage, Magellanic Subantarctic ecoregion, Chile. 
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habitats were significant at different spatial scales. The dominant taxa in 
the intertidal and subtidal assemblages also exhibited a scale-dependent 
distribution pattern. The VC and PVC supported this, indicating that the 
largest patterns of horizontal variation generally occurred at small 
scales. Therefore, the results supported the prediction that univariate 
and multivariate analyses would show significant differences and larger 
VC and PVC at small spatial scales. We will discuss the characteristics of 
the assemblages and possible processes that could explain this high 
small-scale spatial variability along an environmental gradient in a fjord 
in the MSE. 

4.1. Hydrological features 

The decrease in salinity and temperature within the FMO is influ
enced by glacial melt and freshwater discharge in GG and BG (Mansilla, 
2022). An estuarine system with marked vertical and horizontal gradi
ents is generated, as in other fjords of the MSE (Valle-Levinson et al., 
2006, Iriarte et al., 2014, Pérez-Santos et al., 2014). This estuarine 
system varied from inside the FMO to outside, as glacially modified 
waters are exchanged in the JI and LI with upwelling coastal oceanic 
water intrusions (Damme et al., 2005, Straneo and Cenedese, 2015, 
Beaird et al., 2015). Our results coincide with those described by Silva 
and Calvete (2002), who had already recorded the horizontal gradient 
(head-mouth) in FMO two decades ago. It is important to mention that 

Fig. 3. Scale of local patterns of average taxon richness for each site, coast, patch and intertidal level (high, mid and low), Magellanic Subantarctic ecoregion, Chile. 
Each bar represents approximately 21.5 m width of each site shore and patch (±standard error, n = 5). The first three bars of each site correspond to one shore, and 
the second three to the other shore, each bar is a patch within the shore and the site. Dashed line indicates mean intertidal taxon richness. 
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what was observed in FMO is not a general pattern in all fjords of the 
MSE; similar (e.g. Seno Ballena) and different (e.g. Puyuhuapi Fjord) 
gradients have been recorded (Valle-Levinson et al., 2006, Betti et al., 
2017). 

Freshwater discharges from glaciers in GG and BG exhibited 
increased turbidity at shallow depths. In estuarine systems, this is a 

consequence of glacier melting and re-suspension of fine sediments 
(Wlodarska-Kowalczuk et al., 2005, Chu et al., 2012, Tait, 2019). By 
contrast, higher turbidity was recorded with increasing depth in the JI, 
while no turbidity was recorded in LI. Therefore, JI is affected by sedi
ment transport from the head of the FMO as a result of fjord circulation 
(Silva and Calvete, 2002). Turbidity decreases with increasing distance 

Table 1 
Analysis of variance of spatial scale-dependent patterns of taxon richness (ANOVA) and community structure (PERMANOVA) in the intertidal and subtidal of the study 
sites, Magellanic Subantarctic ecoregion, Chile. Abbreviations: LE, Level; DE, Depth, SI, Site; SH, Shore; PA, Patch.    

Taxon richness Community structure  

Source of variation df MS F P MS Pseudo-F P 

Intertidal LE 3 2.94 33.80 *** 34,007 2.24 * 
SI 2 1.99 22.96 *** 37,107 1.96  
SH(SI) 4 0.09 1.12  18,916 4.62 *** 
LExSI 6 0.27 3.11 ** 15,227 1.96 * 
PA(SH(SI)) 16 0.16 1.95 * 4099 3.09 *** 
LExSH(SI) 8 0.23 2.76 ** 7764 2.50 *** 
LExPA(SH(SI)) 32 0.09 1.09  3107 2.34 *** 
Res 143 0.09      

Subtidal DE 3 0.51 6.15 ** 14,131 1.43  
SI 1 0.07 0.02  29,768 2.84 * 
SH(SI) 4 0.37 2.99 * 10,480 3.45 ** 
DExSI 3 0.92 10.40 *** 9855 1.66  
PA(SH(SI)) 16 0.15 1.05  3039 1.73 *** 
DExSH(SI) 4 0.39 2.75 * 5933 1.90 ** 
DExPA(SH(SI)) 16 0.22 1.76 * 3115 1.78 *** 
Res 96 0.12       
Df, Degrees of freedom; MS, Mean squares; F, F-ratio; P, P-values       

*p < 0.05; **p < 0.01; ***p < 0.001  

Fig. 4. Scale of local patterns of mean taxon richness for each site, shore, patch and subtidal depth (5 and 10 m), Magellanic Subantarctic ecoregion, Chile. Each bar 
represents approximately 21.5 m width of each site, shore and patch (±standard error, n = 5). Three bars correspond to a shore within the site, and each bar is a 
patch within the shore and the site. Dashed line indicates mean intertidal taxon richness. 
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from the mouth of the fjord (Murray et al., 2015). These results are 
related to measurements in Arctic fjords, where > 100 FNU has been 
recorded as a result of sediment input from glacial melt, which mainly 
occurs in the coastal zone near glaciers (Klein et al., 2019). High 
turbidity dependent on proximity to glaciers has also been recorded in 
areas with the presence of glaciers in the Antarctic Peninsula (Valdivia 
et al., 2020). However, these gradients in high latitude fjords may vary 
seasonally and spatially (Schneider et al., 2014, Saldias et al., 2016). 
Therefore, in the future it would be important to characterize the fjord 
oceanographically seasonally, to determine the variability in the strat
ification of water masses and the variation of sediment discharge due to 
glacial melting. 

4.2. Vertical and horizontal variability of benthic communities 

Vertical patterns of taxon richness were dependent upon location 
within the fjord, mainly in the two sites close to the glacier (GG and BG); 

no increase in richness was observed towards the lower level of the 
intertidal, contrary to what has been reported in other intertidal studies 
of the MSE (Ojeda et al., 2014, 2019). The high environmental distur
bance along the GG and BG sites caused by low salinity and high 
turbidity would be driving a less diverse and more vertically homoge
neous intertidal habitat, as occurs in Arctic intertidal shores (Peck et al., 
2006, Kuklinski, 2009) and Antarctic shallow glacial environments 
(Valdivia et al., 2020). For the subtidal environment only the LI site 
presented an increase in richness with depth, while the JI site, despite 
being farther from the glaciers than GG and BG, presented its highest 
richness at 5 m depth. Below 8 m depth at this site there was a lot of 
particulate material on the bottom, thus reducing the rocky substrate 
cover. These types of small-scale factors such as the nature and cover of 
the substrate also contribute to changes in the composition and diversity 
of benthic assemblages along a vertical and horizontal gradient (Gutt 
et al., 1999, Aldea and Rosenfeld, 2011, Ojeda et al., 2014, Valdivia 
et al., 2014). This absence of a marked pattern of vertical and horizontal 
diversity along the FMO is in agreement with that reported by Villalobos 
et al. (2021) for another estuarine system of the Magellan province, the 
Comau Fjord, where the highest values of taxon diversity were also 
found at different depths along the fjord. Therefore, in both cases the 
typical pattern of estuarine systems, a decrease in diversity from the 
head to the mouth of the estuarine ecosystems, was not found (Meire 
et al., 2005, Beuchel et al., 2006, Villalobos et al., 2021). Hence, the 
horizontal patterns of macrobenthic organisms are context- and taxo
nomic group-dependent (Brattegard, 1966, Rosenberg and Möller, 1979, 
Hansen and Ingólfsson, 1993, Villalobos et al., 2021). As reported by 
Villalobos et al. (2021), the absence of a linear pattern of richness along 
the FMO agrees with the hypothesis of sub-habitat dependence (Scrosati 
et al., 2020), which predicts that a geographic pattern of biodiversity in 
a given region will differ among different sub-habitats. This model as
sumes that the main abiotic drivers of sessile species distributions vary 
among sub-habitat types (Scrosati et al., 2020, Villalobos et al., 2021). 

In high latitude intertidal habitats of the Southern Hemisphere, 
particularly the rocky shores of the MSE and AP, grazing gastropods of 
the genus Nacella are common and dominant species among the mac
roinvertebrate assemblages (Guzmán, 1978, Ríos and Gerdes, 1997, 
González-Wevar et al., 2011, Ojeda et al., 2014, Rosenfeld et al., 2018, 
Valdivia et al., 2018). Nacella species have been described as forcing the 
richness and abundance of algae, as well as structuring the intertidal 
macro and microalgal communities (Aguilera, 2011, Valdivia et al., 
2014, Valdivia et al., 2018). However, in our study N. magellanica was 
present with minimal abundances in the FMO, rejecting herbivory as an 
ecological process that is structuring and modifying the spatial patterns 
of algal communities along the FMO (Rosenfeld et al., 2018, Valdivia 
et al., 2018). Therefore, our results differ from those found by Valdivia 
et al. (2014) where the high abundance of the grazer N. concinna would 
be forcing the structuring and formation of vertical and horizontal 
patterns of spatial variability at small scales in the intertidal commu
nities of King George Island, Antarctica. Valdivia et al. (2018) reported 
that grazing by N. magellanica on rocky shores of the Strait of Magellan 
generates significant modifications in periphyton and filamentous algae. 
Therefore, the absence of dominant grazers on the shores of the FMO 
may favor the intertidal dominance of annual macroalgae and an 
opportunistic life strategy such as that of U. intestinalis and C. flexuosa 
(Daly and Mathieson, 1977, Sousa, 1984, Mathieson et al., 1991), spe
cies that also possess functional attributes which allow them to prolif
erate in ecosystems with different levels of environmental disturbance 
(Littler and Littler, 1980 Steneck and Dethier, 1994, Fong et al., 1996, 
Martins and Marques, 2002, Larsen and Sand-Jensen, 2006). 

The particularities in the intertidal of the FMO indicate that vertical 
and horizontal variations at small spatial scales could be determined by 
other biological processes (i.e. competition and recruitment), local 
abiotic factors (i.e. salinity and turbidity) and habitat complexity (i.e. 
substrate heterogeneity, presence of glaciers) (Ørberg et al., 2018, Val
divia et al., 2020). For example, our results highlight the low abundance 

Fig. 5. Canonical correspondence analysis (CCA) biplot for the ecological 
correlations between the intertidal taxon cover (a) and subtidal taxon cover (b) 
and the oceanographic variables of the study sites, Magellanic Subantarctic 
ecoregion, Chile. 
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and fragmented distribution of the filter-feeding bivalve Mytilus chi
lensis, a species that historically has been described as an abundant or
ganism that forms dense matrices on rocky shores along the MSE 
(Guzmán and Ríos, 1981, Ojeda et al., 2014, Molinet et al., 2015). 
Considering the absence of intertidal carnivores (Hunt and Scheibling 
1995, 1996, Curelovich et al., 2016, Ojeda et al., 2017), a better 
explanation to describe this horizontal distribution pattern in 
M. chilensis would be the local abiotic factors mentioned earlier. 
Therefore, the high heterogeneity in the abiotic factors and the identity 
of the species that compose the assemblages along the FMO would 
explain the high variability that we found at different spatial scales 
(Scrosati et al., 2011, Ojeda et al., 2017, Curelovich et al., 2018). 

The filter-feeding bivalve Aulacomya atra is a conspicuous species of 
shallow subtidal habitats in high latitudes of the Southern Hemisphere, 

forming extensive matrices in both hard substrates and coarse-grained 
sediments (Reid and Osorio, 2000, Sepúlveda et al., 2016, Betti et al., 
2017, Betti et al., 2021). They also play a relevant role as ecosystem 
engineers by providing habitat complexity and three-dimensionality 
(Jones et al., 1994, Ojeda et al., 2014). Particularly, A. atra was domi
nant along the subtidal of the FMO, however, it had a fragmented 
(patchy) distribution in the BG, GG, and JI and a dense (matrix) distri
bution in the LI. The absence of dominant predators that selectively 
eliminate species such as the asteroid C. lurida in the subtidal of the FMO 
could not explain the fragmented structure and distribution, as 
described in previous studies (Gaymer et al., 2001, Gaymer and Him
melman, 2002, Gil and Zaixso, 2008, Lamare et al., 2009). Therefore, 

Fig. 6. Spatial scale-dependent variance components (VC) of taxa richness for intertidal (a) and subtidal (b) habitat and spatial scale-dependent pseudo-variance 
components (PVC) of community structure for the intertidal (c) and subtidal (d) habitats of the study sites, Magellanic Subantarctic ecoregion, Chile. 

Table 2 
Similarity percentage analysis (SIMPER) of taxa in the intertidal habitat of the 
study sites, Magellanic Subantarctic ecoregion, Chile.  

Taxa Mean abundance Accumulative contribution  

High Mid  
Ulva intestinalis 0.17 0.19  27.19 
Porphyra/Pyropia sp1. 0.13 0.02  42.01 
Nothogenia fastigiata 0.04 0.08  53.93 
Cladophora flexuosa 0.04 0.06  62.95 
Ectocarpus siliculosus 0.03 0.06  71.21 
Adenocystis utricularis 0.01 0.06  77.80 
Scytothamnus fasciculatus 0.02 0.03  82.05 
Mytilus chilensis 0.01 0.03  86.04 
Acrosiphonia arcta 0.00 0.03  89.12 
Elminius kingii 0.00 0.01  91.37  

Mid Low  
Ulva intestinalis 0.19 0.04  19.34 
Cladophora flexuosa 0.06 0.11  33.07 
Adenocystis utricularis 0.06 0.09  44.48 
Ectocarpus siliculosus 0.06 0.08  55.18 
Nothogenia fastigiata 0.08 0.00  65.21 
Mytilus chilensis 0.03 0.07  73.97 
Acrosiphonia arcta 0.03 0.02  78.90 
Elminius kingii 0.01 0.03  82.80 
Scytothamnus fasciculatus 0.03 0.02  86.54 
Cladophora falklandica 0.02 0.02  90.19  

Table 3 
Similarity percentage analysis (SIMPER) of taxa in the subtidal habitat of the 
study sites, Magellanic Subantarctic ecoregion, Chile.  

Taxa Mean abundance Accumulative contribution  

5 m 10 m  

Aulacomya atra  0.20  0.16  24.19 
Symplectoscyphus marionensis  0.06  0.07  34.71 
Balanus laevis  0.06  0.05  43.53 
Mytilus chilensis  0.08  0.01  51.70 
Ulva lactuca  0.05  0.00  57.22 
Sarcopeltis skottsbergii  0.03  0.01  60.57 
Spongomorpha pacifica  0.02  0.00  63.83 
Heterosiphonia berkeleyi  0.01  0.02  66.94 
Myriogramme livida  0.02  0.01  69.98 
Ceramium virgatum  0.01  0.01  73.01 
Ptilonia magellanica  0.00  0.03  75.28 
Ulva rigida  0.01  0.00  77.37 
Arbacia dufresnii  0.01  0.01  78.98 
Porphyra/Pyropia sp2.  0.00  0.01  80.38 
Desmarestia ligulata  0.01  0.00  81.76 
Macrocystis pyrifera  0.00  0.01  83.13 
Ciona intestinalis  0.01  0.00  84.30 
Schizoseris condensata  0.00  0.01  85.45 
Lessonia flavicans  0.01  0.00  86.59 
Chaetopterus sp.  0.00  0.01  87.68 
Rhodymenia sp2.  0.00  0.01  88.70 
Tedania spinata  0.00  0.01  89.54 
Rhizoclonium riparium  0.01  0.00  90.34  
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these patterns observed in the structure could be related to local abiotic 
factors of FMO such as the negative consequences caused by the 
reduction in salinity on the growth of mussels near the GG and BG 
glaciers (Navarro, 1988). It has also been described that physical dis
turbances such as turbidity and consequent sedimentation could 
decrease the presence of hard substrates for benthic recruitment, 
generating biological interactions such as interspecific competition 
(Noda 1999, Hamilton 2000, Thiel and Ullrich, 2002, Navarrete et al., 
2010). Therefore, it is important to mention that in the GG and BG 
glaciers A. atra co-inhabits with other sessile species such as 
S. marionensis and B. laevis. A. atra does form dense matrices in the 
subtidal of the LI, thus emphasizing that local abiotic factors could 
explain the high variability we found in the distribution and structure of 
the assemblages. 

These singularities in local FMO factors could also explain the low 
abundance of macroalgae in the subtidal compared to other studies in 
the MSE (i.e. Marambio et al., 2016, Ojeda et al., 2019), where the de
gree of sedimentation and light regime define the lower limit of algal 
distribution (Wlodarska-Kowalczuk et al., 2005). Salinity is a deter
mining factor in the proportion of red and brown algae in the first meters 
of estuarine systems (i.e. Munda, 1978, Schubert et al., 2011), since red 
algae appear to be more sensitive to variations in salinity than brown 
algae (Cole and Sheath, 1990). This is related to our results, explaining 
the absence of algae of the order Corallinacea in FMO, which are com
mon in the sublittoral rocky shores of the MSE (Newcombe and 
Cárdenas, 2011, Cárdenas and Montiel, 2015). In contrast, outside the 
fjord in LI, lower turbidity and higher salinity allow for greater stability 
and thus a change in the composition and structure of the macroalgae 
(Aumack et al., 2007, Filbee-Dexter et al., 2018). We recorded the 
appearance of the large perennial macroalgae Durvillaea antarctica, 
Sarcopeltis skottsbergii and Lessonia flavicans (Marambio et al., 2017, 
Velasco-Charpentier et al., 2021) indicating greater environmental sta
bility and more oceanic conditions, since these species do not tolerate 
water masses with low salinity and high turbidity (Mansilla et al., 2014, 
Marambio et al., 2017, Méndez et al., 2017). 

5. Conclusion 

The study sites in the MSE generally had their own local factors that 
generate extreme environmental conditions during the summer season 
typical of an estuarine system influenced by glaciers (variations in 
salinity, temperature, turbidity, sedimentation and substrate heteroge
neity), influencing diversity patterns and ecological processes at 
different spatial scales. The local abiotic factors mentioned above were 
possibly the most determinant in generating patterns of variation in 
taxon richness and community structure, with greater variability at 
smaller spatial scales. The information generated on diversity patterns is 
very relevant and is a baseline for the evaluation of ecological processes 
considering spatial scales in shallow macrobenthic communities within 
environmental gradients influenced by glaciers in the MSE. This pro
vides further evidence on the effects of glacial retreat and influence on 
shallow macrobenthic communities in the complex scenarios promoted 
by global changes. Finally, we suggest that it would be important to have 
a larger number of samples over a longer time, to verify if what is 
observed can vary over time. In addition, it would be important to 
replicate this nested design with different spatial scales in other sites 
with glacial influence, to verify if the observed pattern is a pattern that 
only occurs in the Mountains fjord or is common to other places within 
the MSE. 
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Ramírez, M.E., Santelices, B., 1991. Catálogo de las algas marinas bentónicas de la Costa 
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